Monatshefte für Chemie 104, 1325—1332 (1973) © by Springer-Verlag 1973

Neue **\tau-Boride***

Von

P. Rogl und H. Nowotny

Aus dem Institut für Physikalische Chemie der Universität Wien, Österreich

Mit 1 Abbildung

(Eingegangen am 13. Juni 1973)

New τ -Borides

The following τ -borides have been synthesized: $Cr_{\sim 13}Ir_{\sim 10}B_6$, $Mn_{\sim 16}Ir_{\sim 7}B_6$, $Fe_{10-15.4}Ir_{13-7.6}B_6$, $Co_{\sim 15}Ir_{\sim 8}B_6$.

Komplexboride mit $Cr_{23}C_6$ -Typ oder geordneter $Cr_{23}C_6$ -Struktur sind zahlreich. Sie werden in Anlehnung an das Carbid, das in vielen technischen Legierungen als Konstituent auftritt, τ -Boride genannt. Die Fortführung von Untersuchungen im System Fe—Ir—B zeigte, daß neben einem neuen Borid mit Fe₃C-Typ¹ eine zweite ternäre Phase mit der ungefähren Zusammensetzung (Fe,Ir)_{~4}B existiert. Das Röntgenogramm dieser Verbindung weist wieder auf enge Verwandtschaft mit dem Strukturtyp $Cr_{23}C_6$ hin² und läßt sich mit einer kubisch-flächenzentrierten Elementarzelle vollständig indizieren.

Die Phase $(Fe,Ir)_{23}B_6$ ist durch einen erheblichen Metallaustausch Fe/Ir gekennzeichnet; der homogene Bereich erstreckt sich bei 950 °C von Fe₁₀Ir₁₃B₆ bis Fe_{15,4}Ir_{7,6}B₆. Abb. 1 gibt den Verlauf des Gitterparameters wieder. Die Änderung der Intensitäten im Pulverdiagramm mit steigendem Ir/Fe-Verhältnis im Zusammenhang mit der Ordnung der Metallatome wird weiter unten diskutiert.

Die τ -Phase (Fe,Ir)₂₃B₆ steht bei 950 °C mit Bor, mit (Fe,Ir)₂B-Mischkristall (CuAl₂-Typ) und mit der Phase Fe_{2,2}Ir_{0,8}B (Fe₃C-Typ) im Gleichgewicht. In Fe₂B³ kann Fe durch Ir bis zu Fe_{1,6}Ir_{0,4}B ersetzt werden, dabei ändern sich die Gitterparameter von $a = 5,11_0, c = 4,24_6$ auf $a = 5,19_8, c = 4,34_5$ Å für Fe_{1,6}Ir_{0,4}B.

Eine Untersuchung der Systeme Ir-{V,Cr,Mn,Fe,Co,Ni}-B sowie Rh-{Mn,Fe,Co,Ni}-B ergab in den Kombinationen Ir-{Cr,Mn,Co}-B das Auftreten weiterer τ-Boride, dagegen konnte in den Systemen

^{*} Herrn Prof. Dr. A. Knappwost in Freundschaft gewidmet.

Ir—{V,Ni}—B sowie in den Rh-haltigen Systemen bisher kein Hinweis für die Existenz analoger τ -Phasen festgestellt werden (untersuchter Temperaturbereich: 900—1100 °C).

Abb. 1. Verlauf der Gitterparameter für die Mischphase $(Fe,Ir)_{23}B_6$ bei 950 °C. Mit eingetragen sind auch die Werte für die Mischphasen $(Re,Fe)_{23} B_6$ ¹⁴ und $Fe_{23}(B,C)_6$ ¹³

Für die Probenherstellung wurden folgende Ausgangsstoffe verwendet:

- V: stückig, Koch Light Labs Ltd., Colnbrook, England; 99,8% V
- Cr: Elektrolytchrom in Pulverform, Schmelztechnik München; 99,5% Cr
- Mn: Elektrolytmangan, stückig, Fluka, Buchs, Schweiz; "puriss."
- Fe: Carbonyleisenpulver, Fluka, Buchs, Schweiz; "puriss."
- Co: Pulver, Koch Light Labs Ltd., Colnbrook, England; 99,5% Co
- Ni: Pulver, Fluka, Buchs, Schweiz; "puriss."
- Rh: Pulver, Ögussa, Wien; 99,8% Rh
- Ir: Pulver, Ögussa, Wien; 99,9% Ir
- B: Pulver: Norton u. Co., Worcester, Mass.; 96% B kristallisiert: Fa. H. C. Starck, Berlin; 99,8% B

Das Vanadinmetall (in stückiger Form) wurde in verd. HCl gereinigt und nach Waschen in Aceton zu feinen Spänen gefeilt; das stückige Mangan in verd. HNO₃ gereinigt und nach Waschen in Aceton im Hartstoffmörser gepulvert.

0,1 bis 0,3 g Pulvergemisch wurde jeweils in Stahlmatrizen kalt verpreßt und in mit Tantal-Folie ausgekleideten Quarzampullen gesintert (900—1000 °C, 24 Stdn.). Die erhaltenen Sinterkörper wurden erneut gepulvert, verpreßt und nochmals gesintert. Für die manganhaltigen Proben betrug dann die Sintertemperatur 1150 °C. In keinem Falle war ein Angriff auf die Ta-Folie oder auf die Quarzinnenwand zu beobachten. Bei dieser Herstellungsart wird im übrigen sehr darauf geachtet, daß relativ wenig Kontaktstellen zwischen Preßling und Hülse bestehen.

Phase	a [Å]
$Cr_{\sim 13}Ir_{\sim 10}B_{6+x}*$	11,195
$Mn_{\sim 16}Ir_{\sim 7}B_6$	$11,15_{5}$
Fe ₁₆ Ir ₇ B ₆ Fe-reich	$10,97_8$
Fe ₁₀ Ir ₁₃ B ₆ Ir-reich	11,180
$Co_{\sim 15} Ir_{\sim 8} B_{6+x} *$	$10,85_{5}$

Tabelle 1

* Borgehalt bzw. Metall/Bor-Verhältnis nicht näher bekannt.

In einigen Fällen wurden die kalt verpreßten Proben im Lichtbogen unter Zr-gegettertem Argon erschmolzen und anschließend homogenisiert. Die so erhaltenen Proben erwiesen sich "röntgenographisch homogen".

Die τ -Phase im System Mn—Ir—B ließ sich bei einer Zusammensetzung Mn_{~16}Ir_{~7}B₆ (kein merklicher Bereich) homogen fassen. Das Röntgenogramm ist jenem von Fe_{15.4}Ir_{7.6}B₆ sehr ähnlich.

Die Cr- bzw. Co-haltigen τ -Boride treten erst bei Ansätzen mit höherem Borgehalt (Cr_{~35}Ir_{~25}B₄₀ bzw. Co_{~43}Ir_{~22}B₃₅) ausgeprägt in Erscheinung. Vermutlich liegen hier keine merklichen homogenen Bereiche vor.

Die Pulverdiagramme der Cr—Ir—B- τ - sowie der Co—Ir—B- τ -Phase sind untereinander sehr ähnlich; im Vergleich zum Pulverdiagramm der Phase (Fe,Ir)₂₃B₆ findet man jedoch einen charakteristischen Intensitätswechsel bei einigen schwachen Linien. Die Indizierung der Röntgenogramme mit einer kubisch flächenzentrierten Einheitszelle ist in allen Fällen zweifelsfrei.

Tab. 1 gibt eine Zusammenstellung der Gitterparameter der aufgefundenen τ -Boride.

P. Rogl und H. Nowotny:

(1.1.1)	$\sin^{2}\theta \cdot 10^{3}$	$\frac{\sin^2\theta \cdot 10^3}{\text{ber.}}$	7		Iber.			
(пкі)	gem.		I beob.	1)	2)	3)	4)	5)
(111)	_	32,7		2	0	1	2	10
(200)	-	43,6		0	0	0	16	3
(220)	86,9	87,2	SSS	5	9	0	10	17
(311)	120,4	119,9	SSS	3	0	2	2	8
(222)	131,5	130,8	SSS	5	8	4	0	0
(400)	174,4	174,4	s	24	21	9	2	0
(331)	207,9	207,1	SSS	5	4	1	1	0
(420)	218,5	218,0	s^+	27	36	36	74	33
(422)	262,2	261,6	s	22	30	41	77	64
(511))	2050	201.2		(60	70	63	64	51
(333)	295,0	294,2	sst	165	90	76	78	55
(440)	349,0	348,7	s	26	24	28	44	34
(531)	380,9	381,4	\mathbf{m}	47	57	38	38	14
(600))	000 0	000.0		(11	18	13	8	6
(442)	393,0	392,3	s	16	8	4	0	1
(620)	436,0	435,9	sss-	1	1	4	13	13
(533)	467,6	468, 6	SSS	4	4	5	5	6
(622)	479,4	479,5	ss^{-}	7	10	11	23	10
(444)	524,0	523,1	SSS	3	2	0	0	0
(711))		-		. (0	1	1	2	3
(551)		999,8		1	0	0	0	0
(640)	567,2	566,7	SSS	`3	3	2	0	0
(642)		610,3		1	2	0	5	8
(731))		649 A		(0	1	0	0	1
(553)	—	643,0		í 1	0	1	1	2
(800)	697,0	697, 5	SS	`10	10	11	17	13
(733)		730,2		0	0	0	0	1
(820))	544 5	741 1	1.	(3	5	6	15	6
(644)	741,7	741,1	SS^{+}	15	18	17	32	15
(660)j	7 04 0	204		(46	66	63	83	58
(822)	784,8	784,7	st^-	12	17	22	39	32
751)j	017 1	015.0	,	35	42	40	40	35
(555)	817,1	817,3	st^-	117	19	17	17	13
662)		828,2		` 1	1	1	8	3
840)	872,3	871,8	st^{-}	58	62	33	15	4
911) <u>)</u>	004 7	004 5		(39	45	30	30	12
753)	904,7	904,0	st^-	126	33	20	20	5
842) [´]	915,3	915,4	SSS	<u>े</u> 5	9	4	1	0

Ordnung der Metallatome in den Pulverrechnungen 1 bis 5:

1.			
	4 Fe	in 4a)	
	8 Fe	in 8c)	
-	16,6 Fe + 15,4 Ir	in 32f)	x = 0,383
	33,1 Fe + 14,9 Ir	in 48h)	y = 0,169

Neue **\tau**-Boride

2.	Fe in 4a und 8c, Rest stat. verteilt	
	4 Fe	in 4a)
	8 Fe	in 8c)
	19,7 Fe + 12,3 Ir	in $32f$)
	29,6 Fe + 18,4 Ir	in 48h)
3.	Fe und Ir stat. verteilt	
	2.7 Fe + 1.3 Ir	in $4a$)
	5,3 Fe + 2,7 Ir	in 8c)
	21,3 Fe + 10,7 Ir	in $32f$
	32 Fe + 16 Ir	in 48 h)
4.	Ir in 8c, Rest stat. verteilt	
	2.9 Fe + 1,1 Ir	in 4a)
	8 Ir	in 8c)
	23,4 Fe + 8,6 Ir	in 32f)
	35 Fe + 13 Ir	in 48h)
5.	Ir in 4a und 8c, Rest stat. verteilt	
	4 Ir	in $4a$)
	8 Ir \ldots	in 8c)
	24,5 Fe + 7,5 Ir	in $32f$)

Die 24-Boratome liegen jeweils in 24e), x = 0.275; Raumgruppe: Fm3m.

Berechnung der Pulverintensitäten

Sowohl der ausgedehnte homogene Bereich der τ -Phase (Fe,Ir)₂₃B₆ wie auch die relativ geringe Änderung der Intensitäten in Abhängigkeit vom Fe/Ir-Verhältnis legen eine statistische Verteilung der beiden Metallatome über deren Punktlagen in der Raumgruppe Fm3m nahe. In dem sehr ähnlichen Fall der Phase (Fe,Re)₂₃B₆ (Re₂₀Fe₃B₆ bis Re₇Fe₁₆B₆) wurde mit einer solchen statistischen Verteilung der Metallatome über den gesamten Homogenitätsbereich eine gute Wiedergabe der Pulverintensitäten erreicht⁴; nur bei der Zusammensetzung Re₇Fe₁₆B₆ sollen die Re-Atome nach *Davis*⁵ bevorzugt die Lage 8 c) einnehmen.

Für (Fe,Ir)₂₃B₆ läßt sich allerdings mit der vollkommen statistischen Verteilung keine befriedigende Berechnung der Pulverintensitäten erreichen. Eine gute Übereinstimmung erzielt man vielmehr mit einer bevorzugten Besetzung der Lagen 8 c), 4 a) und 48 h) durch Fe-Atome.

Tab. 2 zeigt Intensitätsberechnungen für eine Pulveraufnahme von $Fe_{15,4}Ir_{7,6}B_6$ für verschiedene Atomverteilungen. Die in der Pulverrechnung angepaßten Atomparameter (Tab. 2) sind von den idealen Werten ($x_{32f} = 0.382$, $y_{48h} = 0.167$) für geschlossene Metallatom-Packung wenig verschieden. Tab. 3 gibt die Intensitätsberechnung für $Fe_{11}Ir_{12}B_6$ sowie die zugrunde gelegte Atomverteilung an. Die Besetzung P. Rogl und H. Nowotny:

(hkl)	$\sin^2\Theta \cdot 10^3$	$\sin^2\Theta \cdot 10^3$	I	I
	gem.	ber.	gesch.	ber.
(111)	_	31,8		3
(200)		42,4		1
(220)	_	84.7		1
(311)	117.5	116.5	SSS	8
(222)	128,2	127,1	SSS-	4
(400)	169.7	169.5	s	23
(331)	201,9	201,2	888	4
(420)	212.6	211.8	ss^+	16
(422)	254,9	254,2	ss^+	17
(511)]	000 0	0000		(50
(333)	280,2	280,0	SSU	147
(440)	339,5	338,9	s^+	29
(531)	371,2	370,7	m^{-}	34
(600)]	201.2	201 2	99	ſ 7
(442)∫	381,3	301,0	88	<u></u>
$(620)^{2}$	—	423,7		1
(533)	455,5	455,4	sss^+	5
(622)	466,9	466,0	sss+	4
(444)	508,9	508, 4	SSS	3
(711)	<u> </u>	540.2	a	ر ا
(551)	224.0	5=0,0		
(640)	551,0	550,8	SSS	3
(042)		593,1		0
(553)	—	624,9		$\begin{cases} 0\\2 \end{cases}$
(800)	678.7	677,9	SS	11
(733)	· · · · ·	709,6		0
(820)]	7 00 9	700.0		(2
(644)	720,3	720,2	SS	{ 9
(822)	769 9	769 6		<u>)</u>
(660)∫	105,2	702,0	111	29
(751)	794,3	794,4	\mathbf{m}	$\begin{cases} 29 \\ 12 \end{cases}$
(000)j (669)	,	805.0		(13
(002)	947.9	800,0		45
(011)	047,0	047,5	111	(95
(753)	879,2	879,1	\mathbf{m}	$120 \\ 16$
(842)	890.4	889.7	SSS	3
(664)		932.1		1
(931)	963,9	963,8	\mathbf{m}	49^{-}
/	/-	•		

Tabelle 3. Auswertung einer Pulveraufnahme von $(Fe_{0,48}Ir_{0,52})_{23}B_6$, Cr-K_{α}-Strahlung

 Ordnung der Metallatome und Atomparameter für $(Fe_{0,48}Ir_{0,52})_{23}B_6$:

 2,5 Fe + 1,5 Irin 4a)

 7,0 Fe + 1,0 Irin 8c)

 5,8 Fe + 26,2 Irin 32f)

 x = 0,382

 29,0 Fe + 19,0 Irin 48h)

der Lagen 8 c) und 4 a) mit Fe-Atomen unterscheidet sich eindeutig von jener, die z. B. bei Ni₂₀Hf₃B₆ auftritt⁶, wo sozusagen das große Hf-Atom die Punktlage 4 a) und 8 c) besetzt. Dieser Besetzungsmodus bleibt über den gesamten Homogenitätsbereich weitgehend erhalten. Dabei werden von dem größeren Metallatom M' nur die Lagen 8 c) bei einer Zusammensetzung $M_{21}M_2'B_6$ oder 8 c) und 4 a) bei einer Zusammensetzung $M_{20}M_3'B_6$ eingenommen.

Die 7-Boride sind hinsichtlich der kristallchemischen Verhältnisse vor kurzem ausführlich von Stadelmaier 7 erörtert worden. Im wesentlichen zeichnen sich zwei Gruppen ab, solche gemäß einer Formel $M_{20-21}M_{3'-2}B_{6}$ und jene τ -Boride mit einem M/M'-Verhältnis, das bei 1-2 liegt. Die Struktur kann aufgefaßt werden als relativ geschlossener, regulärer Metallatomverband, in dem sich Cluster von zentrierten Kuboktaedern und Würfeln in drei Richtungen [100], [010] und [001] abwechselnd aneinander reihen, wobei für das geordnete Borid $M_{21}M_2'B_6$ ein weiteres Metallatom M' die Nachbarschaft von 4 Kuboktaedern und 4 Würfel zentriert. Es ergibt sich dann für die Umgebung von M' ein Friauf-Polyeder mit der K. Z. = 16 ($4 \times 3 + 4 \times 1$). Für die Umgebung des Boratoms (oder Nichtmetall X) ist das quadratische Antiprisma ($K, Z_{\cdot} = 8$) charakteristisch. Mit der K. Z. = 8 wäre grundsätzlich auch eine Besetzung der Würfel durch ein Nichtmetallatom entsprechend einer Zusammensetzung $(M, M')_{23}X_7$ möglich, dies ist aber wegen der ungewöhnlichen Umgebung (Würfel) nicht sehr wahrscheinlich⁷. Noch weniger dürfte eine Besetzung des quadratischen Antiprismas durch B2-Paare zutreffen⁸. Andrerseits werden gelegentlich höhere Werte als 20,7 At% B gefunden, und möglicherweise gehören die 7-Cr,Ir- und -Co, Ir-Boride ebenfalls zu solchen τ -Boriden.

Wenn man die Cluster M_{13} oder $M_{12}M'$ bzw. M_8 als jeweils einen Baustein auffaßt, so ergibt sich eine Perowskit-Überstruktur, z. B. $[M_{13}][M_8]M_2'B_6^9$. Sowohl die Cluster-Bildung wie auch die hohe K. Z. (16) von M' spricht dafür, daß die M'-Atome einen größeren Bereich (Radius) besitzen als die M-Atome. Tatsächlich sind es durchwegs große Metallatome, die als Stabilisatoren bei den $M_{20-21}M'_{3-2}B_6$ -Boriden auftreten. Bei der zweiten Gruppe kann man wegen der erheblichen Menge M' nicht mehr von einem Stabilisator sprechen. In Übereinstimmung damit steht auch der weitgehende statistische Austausch von M und M', so daß hier die Formulierung $(M, M')_{23}B_6$ gemäß dem Cr23C6-Typ zweckmäßig ist. Man sieht auch, daß die jeweiligen Vertreter M-M' in diesem Falle meist gleichen oder benachbarten Gruppennummern entstammen. Anders ausgedrückt kann man sagen, daß in den entsprechenden Boriden das Verhältnis R_{Bor}/R_{Metall} durch Zumischen von Mn, Re oder Ir etwas verkleinert, adjustiert wird. Der Übergang von der geordneten zur ungeordneten Struktur erfolgt mit abnehmender Differenz der Elektronegativität der Partner M und M', d. h., daß der elektronische Einfluß gegenüber dem Radienverhältnis dominiert.

Ein bemerkenswert großer Homogenitätsbereich wurde von *Telegus*¹⁰ et al. auch für das $(\text{Re}, \text{Mn})_{23}\text{B}_6$ nachgewiesen $(\text{Re}_{4,5}\text{Mn}_{18,5}\text{B}_6$ bis $\text{Re}_{14,6}\text{Mn}_{8,4}\text{B}_6$ bei 800 °C). Die Ordnung wurde jedoch nicht näher untersucht.

Andrerseits werden das analoge τ -Mn- oder τ -Fe-Borid durch Bor/ Kohlenstoff-Austausch ebenfalls stabilisiert^{11, 12, 13}. Die Daten für Fe-haltige τ -Phasen können nunmehr herangezogen werden, um den Parameter für eine fiktive "Fe₂₃B₆"-Phase zu ermitteln. In Abb. 1 ist neben dem τ -Ir--Fe--B der Verlauf des Gitterparameters für die Phasen Fe₂₃(B,C)₆ sowie für (Re,Fe)₂₃B₆ eingetragen. Der lineare Verlauf, der auch die weitgehend statistische Verteilung stützt, erlaubt in allen Fällen, auf einen Parameter von etwa 10,74 Å zu extrapolieren. Eine befriedigende Lösung sowohl der Verteilung als auch des Besetzungsgrades einschließlich des genauen Metall-Bor-Verhältnisses ist bei dem Cr- und Co-haltigen τ -Borid erst von Einkristallen zu erwarten.

Literatur

¹ P. Rogl und H. Nowotny, Mh. Chem. 104, 943 (1973).

² A. Westgren, Jernkont. Ann. 117, 501 (1933).

³ T. Lundström, Arkiv Kemi 31, 230 (1969).

⁴ E. Ganglberger, H. Nowotny und F. Benesovsky, Mh. Chem. 97, 718 (1966).

⁵ H. H. Davis, unveröffentlicht; Zitat bei H. H. Stadelmaier ⁷.

⁶ E. Ganglberger, H. Nowotny und F. Benesovsky, Mh. Chem. 96, 1144 (1965).

⁷ H. H. Stadelmaier in B. C. Giessen: Developments in the Structural Chemistry of Alloy Phases, New York-London: Plenum Press. 1969.

⁸ H. H. Stadelmaier, Z. Metallk. 54, 640 (1963).

⁹ H. Nowotny, H. Boller und O. Beckmann, J. Solid State Chem. 2, 462 (1970).

¹⁰ V. S. Telegus und Yu. B. Kuz'ma, Dopov. Akad. Nauk RSR. Ser. A, **10**, 945 (1969).

¹¹ M. Lucco Borlera und G. Pradelli: Memor. Sc. fisiche, ecc. S VIII, Vol. X, Ser. II. 3, 69 (1971).

¹² G. Papesch, H. Nowotny und F. Benesovsky, Mh. Chem. **104**, 933 (1973).

¹³ *M. Lucco Borlera* und *G. Pradelli*: La Metallurgia Ital. **59** (11), 907 (1967).

¹⁴ E. Ganglberger, Diss. Univ. Wien 1966.